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The paper deals with the analysis of the dynamic behaviour of the 1-st order system with two
random parameters. The theoretical results have been compared with experiments on flow
model of a stirred tank reactor.

In several recent papers ~3 the dynamic behaviour of the system with random para-
meter has been analyzed. It has been found that it may differ under certain conditions
significantly from the behaviour of the corresponding system with mean value
of random parameter.

Herles* analyzed recently a 1-st order system with random time constant and
derived theoretically the basic statistical characteristics of the impulse response.
In presented paper statistical characteristics are derived for the step response of. the
1-st order system with two random parameters for special types of probability
distribution. In view of the difficulties in realization of the pure impulse response
the results obtained are more convenient for the experimental verification. The results
of the experiments on a model physical system are presented and the comparison
with theoretical analysis is carried out.

THEORETICAL

Statistical characteristics of the step response

Let us have a 1°* order dynamic system described by Eq. (1):

(vfa) + y = bx, (1)

where x, y are input and output time function of the system. The coefficients a, b
randomly vary in time under following conditions:
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a) The random changes of parameter a can occur
only at discrete time instants +;, (i = 0,1,2,...;

ty = 0)
b) Within the interval 1; < t < t;,, the parameter
a keeps the last value a; unchanged 2

¢) The parameter b is the random variable, but
having a constant value in one realization

d) The system response y(1) is a continuous function
of time.

Such system can be solved as time invariant within every interval <t;; #;4,):

V' + ay = abx. (3)

The solution is then given:

y(1) = exp(— Jai dz) . [aibjx(r) exp (Jai dz> dt + ka] =
— exp (—ay). [:aibjx(l) exp (ayt) dr + ki], 7

LS < iy,

where k; is the integration constant, having a different value in every interval
{1y, t; 4, ». For the unit step input

i
v
o

x(1)

=0 <0 5)
the solution equals (t Z 0):
y(t) = exp(—a;1). [aib J.exp (a;t) dt + ki] =b+ k;exp(—ayt), (6)
0 St <tjyy.

The unknown values k; can be found using the continuity assumption (2d) in the
time instants ¢, (y; denotes the values of the output in those instants):

Yo- =0
= you = b+ ko=>ky=—b (7)’
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2186 . Herles, Cermak, Havlitek 3

yi- = b + koexp (—agAt) =
=y« =b+ k exp(—a, Al) 8

Vi - b+ ki_,exp(—a;., iAt) =
=y, =b+k exp(—a‘ iAt)

_exp(—a;-, i A1) exp(—a;_,(i — 1) Ar) - ®)

i - i—2 =

exp (—a; i Aty “exp(—a;_ (i — 1) A

i—1
=exp(a, i At)exp(—AtY aj) k.

i=o

Substituting in Eq. (6):

y; = b[1 — exp (a; i At) exp (——At:g;aj) exp(—a; i Af)] =
= bl — cxp(—Atil;I)aj)] . (10)

Supposing that the random variables b, a; (j =0, 1...) are mutually independent,
the mean and the variance of the response are given (p(.) denotes the probability

density): S
® » i1
E{y) =J J b1 — exp (~41% 0)]
—w —w i=
. p(b, ag, ..., a;_,)db daq ... da; _,

=Jw Fj b[L — exp(—A';E:aj)]-

-® ¥ -

. p(b) plac) ..- pla;.,) dbda, ... da;_,
i-1

— E{b) [1 -1 j” exp (—a; A1) play) daJ]. (11)

-

Supposing the same distribution for all aj (stationarity), we obtain

Ely} =7 =5 {1 - U exp (—a; A1) p(a;) da,]"} ' )

~-®
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Similarly the variance:

Diy} = E{y}} - 7 =

0 o i—t i—1
= b1 — 2exp(—ArY a) +exp(—=2AtY a)].
e J . J
—w j= j

—w =0

. p(b) p(ay) ... pla;_,) dbda, ... da;

_p {1 - zU:exp(-a,. Al)‘p(aj)daj]i
+ ij wCXP (—a; A1) p(ay) d"j:ri}

= e =5y {1 =2 [ exp(oa,30) )|

[ —

D{b}

—o

+ [Jtcmexp (—2a; At) . p(ay) daj:li}
4+ B2 {U:ex,, (=20, A1) . pla;) dn,-:\i - H o0 (=080 sfe) daj:ri} .

(13)
Similar integrals as in Eq (12), (13) have been solved by Herles* for the case of normal
and uniform distribution of a;

a) normal distribution

pa;) = {1lo, J@m)I} exp [ (a; — 8)*[(20.)] (14)
1= JAOc exp (—aj At) . p(a;) da; = exp |:— (ﬁ - %) Ar] (15)

b) uniform distribution:

plas) = 1/2b) for a—b<a Sa+b (16)

J
=0 forothera;

(17)

b At

inh b At
I=exp(—aAl). (%>
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o, = b/\/3

¢) binary distribution:

(18)

Random variables a; can acquire only two values (a, =4 + o,), each of them

with probability P = 1/2:

p(ay) = 4[8(a = o0) + 8@ + 0,)]
(8(.) is Dirac delta)
I = exp(—aAt).cos ho, At
Using expressions for [ in (12), (13), we obtain:

a) normal distribution:

2
Bfb=1- exp[-— (& - U“ZAt> iAl:|

(0,:/B)* = exp (—2a i At) exp (207 i At*) — exp (o7 i A?) +

+ (0ufB)? {1 —2exp [— (a - ”;A‘) iAt] + exp [~ (@ — o2 Af) 2i Af]}

b) uniform distribution:

_ inh o, At /3\}
b =1—ex —GiAy, (2R AVI
7l Pl ) ( o, At /3

(0,/B) = exp (—2a i Ar) [(

o, At2./3
_ (sinha,,AtN/3)“j| 4

0, At /3
+ (04/b)? [1 — 2exp(—a iAt)(

o, A12./3

¢) binary distribution

sinh o, At 2 \/3)1 B

sinh o, At \/3
o, At /3

+exp(~2ai At)<smh a, At 2\/3) ] .

(19)

(20)

(22

(23

(29)
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Ji/b =1 — exp(—a i At). cosh' g, At (25)
(0,i/B)* = exp (—2a i At) [cosh' 20, At — cosh?! o, A1] +
+ (04/B)* [1 — 2exp (—d i Ar).coshi o, Al +

+ exp (—2a i At) . cosh 20, At] . (26)

The normalized standard deviation and the difference between the stochastic
and deterministic step responses for all three distribution are shown on Fig. 1
(0,/a = 0'5; /b = 01; @ At = 0:2;1). It illustrates (similarly to Herles*), that
even a very large amount of fluctuations exhibits relatively very small influence
on the mean value of the response. The difference is much less than the standard
deviation of the response. The influence of the type of distribution is almost negligible
(some smaller differences for @ At = 1 have less practical importance due to very
rough approximation of a real “continuous” case of fluctuating parameters).
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FiG. 1 Fi1G. 2
Theoretical Normalized Standard Deviation Diagram of the Experimental Unit
of the Step Response (up) and the Dif- 1, 2 NaCl solution storage tanks, 3 sole-
ference (down) Between the Responses of the noid valves, 4 power transducer, 5 random
Deterministic and Stochastic Systems (mean process generator GENAP I, 6 stirred
value) reactor, 7 conductivity probe.

O normal distribution; + uniform distri-
bution; A binomial distribution; (coinciding
values at g At = 0-2 are indicated as
"normal*).
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EXPERIMENTAL

Experiments with flow model of a continuous stirred tank reactor have been carried out and con-
centration step input response obtained in the experimental arrangement acc. to Fig. 2. Tank
reactor of the constant temperature of volume ¥ = 14-21 was filled initially with distilled water.
Perfect mixing of the content of reactor was attained by mechanical stirrer. The mean flow-rate
of the solution of NaCl 15 kg/m® concentration in distilled water was determined as § = 170-4
1/h.

This corresponds to the mean value of time constant @ = 0-2 min~ . For different values
of relative standard deviation o, /a corresponding values of two different flow rates @, Q, of the
solution were calculated. At o,/a = 0-5Q; = 255-61/h, Q, = 85:21/h. Generator of random
processes GENAP 111 was used for generation of true random two-level sequence with binomial
distribution and identical probability of “0” and 17,

This sequence controlled through power transducer and solenoid valves switching from one
value of the flow rate to the other.

Two different switching intervals were chosen, namely Af = 1 min and At = 5 min. For this
arrangement the governing equation can be written as

(V[Q) de,[dt + ¢x(1) = ¢, (1)

FiG. 3
Comparison of the Experimental Results with the Step Response of the Simplified Theoretical
Model
Sample average and standard deviations from the experiments at a At = 02, g,/a = 05;
theoretical mean values and standard deviations resulting from the simplified model for
a At = 02, a,/a = 05, o,/b = 0-0;
deterministic step response.

| 1 &®®0-0-0
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or
(V]Q) dE,[dt + Ey(t) = (Ky/K)) E((1) . 27y

Twenty experiments were performed using Af = 1 min, twenty experiments using Af = 5 min,
at ,/a = 0-5. The estimates of average values and standard deviations were calculated at discrete
intervals Ar.

Digital simulation for the same parameters as in the experiments has proceeded on 9821 A HP
calculator using software generation of random binary sequence. Thus two sets of simulated
runs were obtained and processed on the calculator in the same way as the experimental results.

The additional experiments were carried out which included the measurements of transient
response at constant flow rate Q = 170-4 1/h, 20 experiments at each of the two intervals At =
= 1 min, Ar = 5 min. In this way the separate effect of the random constant b could be estimated.
The results were processed in the same way as before.

FiG. 4
Comparison of Experimental, Simulated and Theoretical Data o,/qg = 05,3 At = 0-2

Sample average and standard deviation values from experiments;

sample average and standard deviation values from simulation runs, cr,,/E = 0-0;

- ®-8-® 0-0-0

theoretical standard deviation limits for obe =01

— deterministic step response.
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RESULTS

In Fig. 3 the comparison of the theoretical results for parameters ¢,/a = 0-5, aAt = 0-2
and ¢,/b = 0-0 indicates the inadequacy of this model when compared with experi-
mental data. The normalized standard deviation values of the transient response
dont tend to zero with increasing time as it would result from the theory, but to some
constant value distinct from zero. Such behaviour of real experimental data can be
better matched by the concept of fluctuating constant b.

In Figs 4 and 5 the experimental results together with the results from simulation
runs are compared with the results of theoretical analysis for selected values of para-
meters within the range which is interesting from the practical point of view.

The deviation of mean values of transient responses at different time intervals
from the deterministic solution as it results from the theoretical analysis is significant
only for @ At = 1 and it agrees with both the experimental and simulation results.

Fic. 5

Comparison of Experimental, Simulated and Theoretical Data
o,fa= 05, aAt=10;
sample average and standard deviation values from experiments;

sample average and standard deviation values from simulation runs, o-b,’E = 0:0;

theoretical mean values and standard deviation limits for o, /b = 0-1;

-@®— ©-0-0 ®-8-®

deterministic solution.
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The dispersion of the experimental transient responses confirms the necessity
of including the fluctuations of the parameter b into the theoretical model in order
to attain satisfactory agreement. The reason of this behaviour has to be looked
for in the experimental method itself. It has been confirmed also by the experiments
in “deterministic”” arrangement, i.e. with constant parameter a.

In this case there results from Eqs (22), (24), (26) for all probability distributions
considered

(0,ifB)* = (0u/B)* (1 — 2exp (—a i At) + exp(—2aiAt)). (28)

As can be seen from Fig. 6 the dispersion of experimental data fitts rather well
Eq. (28), however the value (0,,/b) = 0-05 has to be selected. This value is however
considerably lower than would result from the results given in Figs 4, 5. The same
effect can be observed also at the experiments for @ At = 0-2.

o

P2

Fi6. 6
Comparison of Experimental and Theoretical Values for ¢,/a == 0
o

Sample average and standard deviation values from experiments;

[— o-0-

theoretical standard deviation limits for ab/E = 0-05;

— deterministic step response.
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The origin of this has to be looked for in the physical nature of the fluctuations
of parameter b, in the corresponding Eq. (27) this being equal to the ratio K,[K,.
Possible explanation can be seen in conductivity method e.g. in change of calibration
constants K,, K from one experiment to another as caused e.g. by electrodes aging,
electronic equipment drifts etc. The existing difference in the magnitude of the dis-
persion of parameter b however proves, that the mechanism of fluctuations is directly
influenced also by the fluctuations in flow rate Q.

CONCLUSIONS

The extension of the analysis of the first order stochastic system for the case of two
random parameters as applied to the transient response demonstrated that the
dispersion of the transient response is influenced considerably more by the fluctua-
tions in constant b, than by the fluctuations of the same relative magnitude of the
time constant a. The distribution of the fluctuations of the time constant a has
significant effect on the dispersion of transient response at higher values of @ At, it
means at the fluctuations of flow rate with characteristic period comparable with the
time constant of system. For the set of experiments which have been carried out so far
there does not exist definite idea about the nature of statistical behaviour of constant b.
Most probably it relates to the conductivity method used.

LIST OF SYMBOLS

a parameter in Eq. (J)

b parameter in Eq. (J)

¢y(t), c,(t)  input, output concentration functions

E(t), E;(t) input, output conductivity measurements signals

K,, K, calibration constants in Eq. (27)
() probability density function
x(1) input time function

(1) output time function

Db{} dispersion operator

E{} expected (mean) value operator
o standard deviation

30 Dirac function

— average value

i index
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